
Improving the energy efficiency of STT-MRAM
based approximate cache

Wei Zhao1, Wei Tong1*, Dan Feng1, Jingning Liu1, Zhangyu Chen1, Jie Xu1, Bing Wu1, Chengning Wang1, Bo Liu2

1Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System,
Engineering Research Center of data storage systems and Technology,

(school of Computer Science & Technology, Huazhong University of Science & Technology),
Ministry of Education of China, Wuhan, China

2Hikstor Technology Co., LTD, Hangzhou, China
Email:{weiz, tongwei, dfeng, jnliu, chenzy, xujie dsal, wubin200, chengningwang}@hust.edu.cn,

liubo@hikstor.com

Abstract—Approximate computing applications lead to large
energy consumption and performance demand for the memory
system. However, traditional SRAM based cache cannot satisfy
these demands due to high leakage power and limited density. Spin
Transfer Torque Magnetic RAM (STT-MRAM) is a promising
candidate of cache due to low leakage power and high density.
However, STT-MRAM suffers from high write energy. To leverage
the ability of tolerating acceptable quality loss via approximations
to data, we propose an STT-MRAM based APProximate cache
architecture (APPcache) to write/read approximate data thus
largely reducing energy. We find many similar elements (e.g.
pixels in images) existing in cache lines while running approximate
computing applications. Therefore, APPcache uses several light-
weight similarity-based encoding schemes to eliminate the similar
elements to reduce the data size thus reducing the write energy
of STT-MRAM based cache. Besides, we design a software
interface to manually control the output quality. APPcache can
significantly eliminate similar elements, thus improving energy
efficiency. Experimental results show that our scheme can reduce
write energy and improve the image raw data compression ratio
by 21.9% and 38.0% compared with the state-of-the-art scheme
with 1% error rate, respectively. As for the output quality, the
losses of all benchmarks are within 5% with 1% error rate.

Index Terms—approximate computing, STT-MRAM, energy

I. INTRODUCTION

In the big data era, approximate computing applications such
as machine learning, image processing, are widely used in
human’s daily life. However, the frequent computations and
I/O operations lead to huge pressure for the current computer
systems [1]. Consequently, large capacity and high energy-
efficiency caches are needed to bridge the performance and
energy gap [2]. Unfortunately, the current SRAM based cache
faces challenges with the CMOS technology scaling because of
increased leakage power and process variations. Spin Transfer
Torque Magnetic RAM (STT-MRAM) is a potential cache
candidate in recent years due to several advantages, such as
high chip density, low leakage power, low read latency, and
good compatibility with CMOS [3]. However, the write energy
efficiency of STT-MRAM is limited due to the long spin
transfer torque switching process, which causes high write
energy and long write latency [4].

*Corresponding author: Wei Tong (tongwei@hust.edu.cn)

Emerging applications (e.g., machine learning, image pro-
cessing) exhibit good intrinsic resilience to data errors, which
provides the opportunity to reduce energy through approxi-
mation techniques to the underlying data [5]. Approximate
computing leverages this property to improve the energy and
performance of computing systems at different levels, includ-
ing software, architecture, and circuits [4] [6]. Several works
proposed some schemes to reduce the read and write energy by
accessing approximate data [7] [8]. Some other works improve
energy efficiency by designing approximate multipliers and
adders [9] [10].

To fully use the error resilience of approximate computing
applications, recent works proposed some approximate encod-
ing or compression schemes to balance the output quality and
energy efficiency. Biscaling [11] truncates the data bits of both
the most significant bit (MSB) and least significant bit (LSB)
direction. But the MSBs can be truncated only if all MSBs of
the elements are the same, which leads to a low compression
ratio. For existing approximate applications, such as machine
learning, the image raw data are stored in the main memory
and cache to access data fast. Because of the similarity of raw
data, some schemes are proposed to reduce the data redundancy.
AxBA [5] is an approximate bus architecture, reducing the
bus traffic by removing redundant data of typical approximate
computing applications. However, this scheme uses the first
element as the only base, which cannot effectively eliminate
redundant elements. Furthermore, SimCom [12] selects several
bases to reduce data redundancy for main memory, but it still
chooses the first element as the base of each similar part, which
is not effective enough. Besides, the tag bits for recording the
similar elements may cause large bit writes.

In this work, we propose APPcache, an energy-efficient
cache architecture for several approximate applications. We
observe that the main bit flips written to STT-MRAM based
cache are caused by image or video raw data. Besides, raw
data shows data similarity in the cache line. We observe that
selecting the geometric mean value of the minimum and maxi-
mum data in the data set as the base element can reduce more
similar elements. Based on the key observation, we propose a
similarity-based encoding scheme to reduce the written data
size thus improving energy efficiency. Besides, we propose

run_tag to record similar elements, and we observe that
many full-similar (all elements in the cache line are similar with
the base) cache lines exist in several benchmarks. Therefore,
we use a 1-bit tag to indicate the state of full-similar to avoid
large extra writes. Then, for the bases followed by several
similar elements, these bases must be written precisely. For
the bases without similar elements, we can choose the most
energy-efficient value as the base from all possible values. The
main contributions of this work are as follows:

• Three key observations: (1) The main bit flips are from
the raw data; (2) The geometric mean base can gain more
similar elements with the same error rate; (3) Many full-
similar cache lines exist in several benchmarks.

• We propose several energy-efficient techniques to reduce
the write energy of STT-MRAM based cache.

• We propose APPcache, an energy-efficient cache archi-
tecture. Besides, a software interface is designed for
programmers to set the output image quality.

• Experimental results show that APPcache can reduce write
energy by 21.9% and improve raw data compression
ratio by 38% compared with the state-of-the-art scheme,
respectively. The quality losses of all benchmarks are
within 5% with 1% error rate.

II. BACKGROUND AND MOTIVATION

A. STT-MRAM Basics
An STT-MRAM cell is composed of one transistor and one

Magnetic Tunneling Junction (MTJ), i.e. 1T1M structure. MTJ
is the main component of STT-MRAM, and different resistance
states of MTJ correspond to different logic values (0 or 1)
[3]. Fig. 1(a) shows the structure of MTJ. It is composed of
two ferromagnetic layers (Free Layer and Reference Layer) and
one oxide barrier layer (MgO). The magnetization direction of
the reference layer is fixed, and the free layer’s magnetization
direction can be parallel (P) or anti-parallel (AP) to the refer-
ence layer. P and AP indicate the cell is in low resistance state
(logical 0) and high resistance state (logical 1), respectively.
The transistor can control the current that flows through the bit
line (BL) and source line (SL) to write and read data bits. Fig
1(b) shows the structure of SLC STT-MRAM.

While writing the data of an STT-MRAM cell, the write
current switches the magnetization direction of the free layer,
causing a bit flip. Due to the large current and long switching
time, writing data consumes significant energy [4]. For a read
operation, a small sensing current is applied to generate a bit
line voltage (VBL). This VBL is then compared with a reference
voltage to decide whether a logical 1 or a logical 0 is stored in
the cell. The details of reading and writing data are diagrammed
in Fig. 1(c).

(a) (c)(b)

Free Layer

MgO

Reference Layer

Free Layer

MgO

Reference Layer

Iread , Iwrite0 Iwrite1

BL

SL

WL

Fig. 1: (a) MTJ structure (b) The structure of SLC STT-MRAM
(c) Read and write operations.

B. Approximate Storage
For emerging approximate computing applications, the data

(e.g., image, video, media, etc.) can tolerate minor errors. Thus,
it is possible to improve the energy efficiency and memory
performance at the sacrifice of minor accuracy. Previous works
proposed to store the encoded image/video (i.e. .jpeg or .mp4
format) data in MLC PCM substrate storage [13] [14]. How-
ever, for approximate computing applications, CPU or GPU
uses the raw data of image and video for computation, and the
encoded data need to be decoded in the cache and memory.
Several schemes proposed to eliminate the number of similar
cache lines [15] [16], thus effectively reduce the overall writes.
However, searching for similar blocks and maintaining the
persistence of cache lines incurs extra hardware overhead and
performance loss. MLC STT-MRAM based approximate main
memory [17] is used to store images. This work reduces write
energy by writing only one of several neighboring similar pixels
to the soft domain of MLC STT-MRAM. But this technique
wastes the capacity of the hard domain. Biscaling [11] is
proposed to compressed data written into the main memory
with both the MSB and LSB direction, but this scheme highly
depends on the data patterns. SimCom [12] and AxDedup [5]
are two effective techniques that harnessing the intra-block data
similarity to reduce bit flips. However, they use the first element
as the base, which cannot effectively eliminate similar elements.
Unlike them, our APPcache can largely reduce the writes to
similar elements with little quality loss.
C. Motivation

1): We test the bit flips of several typical approximate
computing benchmarks from TABLE II with the system con-
figuration in TABLE I. We find that the main bit flips are
from writing the image raw data of approximate computing
applications. From the results shown in Fig. 2, we can know
the bit flips of image data take up the main part of overall bit
flips, thus leading to large energy consumption.

j p e g
k m e a n s s o b e l

2 d c o n v
h i s t e q

s m o o t h i n g c n n0 %
2 0 %
4 0 %
6 0 %
8 0 %

1 0 0 %

Th
e r

ati
o o

f ra
w d

ata
 bi

t w
rite

s

Fig. 2: The ratio of raw data bit writes.
2): Due to the pixel-level similarity of image and the address

continuity, the data in cache lines exhibit good similarity. We
formulate error threshold thapp in Equation 1. Ei and Ebase are
pixel values of the ith and base elements, respectively. While
the difference with base is within the error threshold, Ei is
identified similar to the base. The relative error rate is defined
as Equation 2. maxvalue is the possible maximum value (e.g.
255 for 8-bit image).

|Ei − Ebase| ≤ therror (1)

error rate =
therror

maxvalue
(2)

Increasing the therror can relax the data similarity. We find
that selecting the first element cannot totally remove similar
elements with a specified error rate. For example, there is a
image data set A = {80, 83, 81, 84, 85, 88}. The error threshold
therror is set to 4, and the difference of each value in the
set is not huge. Selecting the first element leads to only four
similar elements. However, we find that difference between the
minimum and maximum elements is less than 2∗ therror. Thus
we can use the geometric mean (Gmean base) value of the
maximum and minimum elements (i.e., 84) as the base. This
method leads all elements in the data set are similar. Now, we
prove that this method can make all similar elements at the
same error threshold. We give a data set that all values satisfy
Equation 3.

max−min ≤ 2 ∗ therror (3)

Gmean =
max+min

2
(4)

Either min or max has the largest arithmetic difference
maxdiff with Gmean base.

maxdiff = max−Gmean =
max−min

2
≤ therror (5)

or

maxdiff = |min−Gmean| = |min−max|
2

≤ therror (6)

From Equation 4, 5, 6, we can prove that all data are within
the same error threshold.

We test the normalized number of full-similar (all elements
in the cache line are similar with the base) cache lines under
these two methods. As depicted in Fig. 3, our Gmean base can
significantly increase the number of full-similar cache lines,
and we can also learn that many cache lines are full-similar.

j p e g
k m e a n s s o b e l

2 d c o n v
h i s t e q

s m o o t h i n g c n n0 . 0

0 . 5

1 . 0

1 . 5

No
rm

aliz
ed

 fu
ll-s

im
ilar

 ca
ch

e l
ine

s

 F i r s t a s b a s e G m e a n b a s e F u l l - s i m i l a r r a t i o

0 %
2 0 %
4 0 %
6 0 %
8 0 %
1 0 0 %

Th
e r

ati
o o

f fu
ll-s

im
ilar

 ca
ch

e l
ine

s

Fig. 3: Normalized full-similar cache lines of two ways.
III. DESIGN

The overview of APPcache architecture is shown in Fig. 4.
While a block address hits the image data region, the coming
data will be encoded/decoded with our proposed scheme. If not,
this block is accessed precisely. Especially, the cache controller
cannot identify the physical address of image data. APPcache
needs programmers to annotate the virtual address that we want
to approximately access [4] [11] [12]. The virtual address can
be translated to physical address through Translation Lookaside
Buffer (TLB).
A. Similarity Based Encoding Algorithm

Selecting the Base. The cache lines of approximate comput-
ing benchmarks exhibit good data similarity, and minor changes
of data make little quality loss. We select the geometric mean
value of the maximum (V aluemax) and minimum (V aluemin)
data as the base to gain more bit flips reduction. Fig. 5 shows
the example of choosing the base element. This cache line is

Programmers

//initialize code;
set_app_addr(...);
set_quality(...)
//some annotations

//rest application

code

Input file

VADDR

PADDR
TLB

Tag

Access for

metadata

Cache

controller

Data array

Request

Cache

Hit

Way 1 Way 2 Way n
precise

write/read

StartAddr EndAddr Qloss

0x445040 0x5c5000 3% loss

StartAddr EndAddr

0x77fd62 0x78cec2

Qloss error
0 0

2% 3

Quality table

APPcache

encoding unit

CPU

approximate write

APPcache

decoding unit

approximate read

yes

no

Fig. 4: The overview of APPcache architecture.
derived from kmeans. The image format of kmeans is RGB.
Due to the continuity of similar pixels, we can choose the first
three channels as the first element, then every three channels are
divided into an element. As for element6, it has one channel.
While the three channels (one for element6) of an element are
all similar to the base, this element can be identified as similar.
We introduce the process of comparing one channel. Firstly, we
set the first element as the initial V aluemax and V aluemin.
Then, we compare the V aluemax and V aluemin with the new
element to determine new V aluemax and V aluemin. If the new
values satisfy Equation 3, the new element can be considered
similar. Next, we continue this process until an element cannot
satisfy the constraint or reaching the end of a cache line. Then,
the base of one channel is computed as the geometric mean
value of V aluemax and V aluemin. The comparison procedures
of channels proceed in parallel. When a channel value cannot
satisfy Equation 3, the element is not similar, and the encoder
will repeat the process above to start a new base. As for the
cache line in Fig. 5, all elements are similar, and we only have
to write one base thus largely reducing bit writes. Besides, we
allocate 4 bits to record the bitmap formats and data types.
The details of selecting the base of one channel are shown in
Algorithm. 1.

82 327F 81 3180 85 297F 75 327E 80 327F 82
Uncompressed

new data

element1 element2 element3 element4 element5 element6

1

7D 317F

Determine the base and the run_tag

7D 317F saved space

100000Base: run_tag:

0F A0

2 Write base and tag into cache line

00001111 10100000
 11:int data type

11:3 channels
 1:all elements are similar

Encoded data

Encoding:

Decoding:

7D 317F saved space0F A0

7D 317F 7D 317F 7D 317F 7D 317F 7D 317F 7D

Fig. 5: The example of our similarity based encoding.

Recording the Bases and Similar Elements. To effectively
record the elements thus decoding data, we propose run tag
to track the bases and similar elements. For a cache line from
kmeans as shown in Fig. 5, the run tag of the first element is
set to ’1’, which means the start location of several similar
elements. While the following run tag is set to ’0’ if the
subsequent element is similar to the base. If one element
cannot satisfy the similarity constraint shown in Equation 3,

the corresponding tag bit is set to ’1’ to start a new base.
With this scheme, only 6 bits are required for the cache line of
kmeans to record the base and similar elements. Besides, due
to the existence of many similar elements, many ’0’ data are
in run tag. In other words, there are many same data (’0’)
in the old and new tags, leading to low bit flips. Furthermore,
as shown in Fig. 3, the full-similar cache lines take up the
main part of overall cache lines. Based on this, we set a 1-bit
tag to indicate whether this cache line is fully similar or not.
With this technique, the writes to run tag can be replaced by
writing the 1-bit tag. While decoding data, the decoder can get
the information of bases and similar elements through run tag.
The details of the encoding process are shown in Algorithm.
1.

Algorithm 1: Similarity Based Encoding
Input: Ci (Ci is a channel value of ith element),

anotations of data type and image format.
Output: Cbase, run tag

1 Cmin, Cmax, Cbase = C0;
2 run tag[0] = 1;
3 for i = 1; i ≤ pixelnum; i++ do
4 Cmin = min(Ci, Cmin);
5 Cmax = max(Ci, Cmax);
6 if Cmax − Cmin ≤ 2thapp then
7 run tag[i] = 0;
8 Cbase = (Cmax + Cmin)/2;

9 else
10 run tag[i] = 1;
11 Cmin, Cmax, Cbase = Ci;

B. Selecting the Most Energy-efficient Base

After the similarity-based encoding, some bases may have
no similar elements. For these bases that have more than 1
similar run, they must be written precisely. While the bases that
have no similar elements (i.e. zero runs) can be approximately
written. We observe many zero-runs bases existing after the
similarity-based encoding. Besides, the value of these bases can
be written approximately with several values. To reduce the bit
flips, we can choose the base which has the minimum bit flips.
Fig. 6 shows an example of selecting the most energy-efficient
base. There are two elements in the data after similarity-based
encoding. From the run tag, we can know that the first base
has no runs. Then, the encoder calculates bit flips with all
optional values to decide the base which produces the minimum
bit flips with the old cache line data. For the green channel, the
possible value ranges from ’0’ to ’15’ while the error threshold
is 8. Next, the encoder calculates the bit flips of several possible
values with the old data to avoid extra bit writes. Finally, the
value ’A’ is selected for the green channel. The other channels
similarly operate in parallel. When decoding data, the bases
with no runs can be directly read out.

C. Software Interface

To minimize the burden of programmers, we propose a
software interface that allows programmers to manually select
approximation tolerant regions in the system address space so
that we can get specified output quality.

16 31F0 saved space0F 30 7 20F9

00110000 The first base can be written

approximately

Encoded

data

 [0,15] [241,255] [24,40]

Select the value which has minimum bit flips with old data

Error

threshold=8

16 31F0 saved space0F 30 A 1EF2After:

Decoding: A 1EF2 16 31F0 16 31F0 16 31F0 16 31F0 16

3 channels operate in parallel

Fig. 6: The example of selecting the energy-efficient base.

Software interface. Following software interface can help
programmers set the output image quality. In the function,
start and end are the image data start and end address,
respectively. Q_loss specifies the required output quality
loss. While programmers specify the output quality, APPcache
system looks up the quality table to select the corresponding
error threshold of the closest quality loss value. Then, with the
help of the quality table, our proposed scheme can encode data
with this error threshold. The detailed workflow is shown in
Fig. 4. Besides, the quality table only includes a few entries,
so that the capacity overheads are negligible. A practical way
to implement quality control is to extend ISA like [4].

set_quality(start,end,Q_loss);

D. Overhead Analysis
APPcache needs encoder/decoder to complete the approxi-

mate write/read process. We use Synopsys Design Compiler
to synthesis the overhead of encoder and decoder with 130nm
technology node library. The simulation results are scaled down
from 130nm to 22nm according to the scaling rule of transistor.
The latency of the encoder and decoder are 1.63ns and 0.33ns,
respectively. The encoding latency can be hidden by the long
write latency of STT-MRAM, and only the decoding process
is on the critical path [18]. However, the performance loss
caused by the low decoding latency can be neglected. Besides,
the energy parameters of encoder and decoder are 3.84pJ and
0.31pJ , respectively, which are much lower than the write
energy of STT-MRAM. The area overhead of encoder and
decoder is so small compared with the STT-MRAM cache,
which is negligible. Besides, the quality table is accessed only
when programmers use the software interface, and the overhead
caused by a small number of access operations can be ignored.

IV. EVALUATION

We use a full system simulator gem5 [19] to implement
our proposed scheme. The system configurations are listed in
TABLE I. We use an 8MB STT-MRAM cache as the L2 unified
cache. The detailed parameters of STT-MRAM are generated
from a circuit-level simulator NVsim [20]. Then, we integrate
the timing and energy parameters of STT-MRAM cache into
gem5. We evaluate the write energy and raw data compression
ratio of several approximate applications (jpeg, sobel, kmeans
are from AxBench [21], 2dconv, histeq are from PERFECT
[22], and smoothing is from MiBench [23]). A Convolution
Neural Network (CNN) based digit recognition is also used
in our test benchmarks, and the data set is MNIST [24]. The

details of these benchmarks are listed in TABLE II. To evaluate
the output quality, we use Root Mean Square Error (RMSE)
[21] as the evaluation metric of jpeg, kmeans, sobel, 2dconv,
histeq, smoothing, the definition of RMSE is shown in Equation
7, and xi and yi are the precise and approximate outputs,
respectively. As for digit recognition, we use classification
accuracy as the evaluation metric. The quality loss is evaluated
via the relative error rate compared with precise output.

RMSE =
1

m

m∑
i=1

(xi − yi)
2 (7)

We compared several aggressive schemes with our proposed
APPcache. For the approximate computing applications, several
advanced schemes are used to reduce the bit flips of the raw
data. As for the non-image raw data, we assign Flip-N-Write
[25] encoding with each 8 data bits with 1 tag bit to reduce bit
flips. To ensure the fairness of these several schemes, the error
rate is set to the same value. The brief introduction of these
schemes are as follows:

• Biscaling [11]: This scheme uses bidirectional bits trun-
cating to reduce the overall bit flips.

• AxDedup [5]: This scheme sets the first element as the
only base to reduce the overall data size via data similarity.

• SimCom [12]: This scheme sets several flexible bases to
eliminate more similar elements.

• APPcache: This is our proposed scheme with all opti-
mizations.

TABLE I: System configurations.
Cores 4-Core, 2.0GHz, out-of-order

L1 I/D cache
private, 64KB per core, 2-way;

LRU, 2-cycle latency

L2 unified cache
8MB, 64B cache line;

8-way, LRU, 15-cycle latency
Main Memory 4GB, DDR-1600

TABLE II: Application benchmarks.
Application Algorithm Dataset Evaluation Metric

Digit Recognition cnn MNIST Classification Accuracy
Image Compression jpeg

Axbench

Root Mean Square Error

Edge Detection sobel
Image Segmentation kmeans

Image Processing 2dconv
PERFECT

Image Enhancement histeq
Image Smoothing smoothing MiBench

A. Write Energy
The normalized write energy is shown in Fig. 7. Due to

the efficient encoding, APPcache gains the best write energy
reduction. For the Biscaling scheme, the most significant bits
cannot always be truncated, thus the energy reduction is limited.
Compared with Biscaling, AxDedup and SimCom can reduce
similar elements thus reduce write energy, and SimCom gains
more energy reduction in all benchmarks except cnn. This is
because almost all cache lines of cnn are full-similar, and in
this case, AxDedup can reduce more data size thus leading
to more write energy reduction. APPcache can significantly
reduce write energy by decreasing more similar elements bit
writes. Besides, APPcache can reduce the writes to run tag
and lower the writes for full-similar cache lines. As a result,
APPcache can reduce write energy by 31.3%/30.8%/21.9%
compared with Biscaling/AxDedup/SimCom with 1% error rate

on average. Besides, APPcache can reduce write energy by
36.34%/34.1%/24.03% and 38.05%/33.67%/23.42% compared
with Biscaling/AxDedup/SimCom with 3% and 5% error rate,
respectively.

j p e g
k m e a n s s o b e l

2 d c o n v
h i s t e q

s m o o t h i n g c n n
g m e a n 1 %0 . 0

0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2

g m e a n 5 %No
rm

aliz
ed

 wr
ite

 en
erg

y B i s c a l i n g A x D e d u p S i m C o m A P P c a c h e

g m e a n 3 %

Fig. 7: The normalized write energy of several schemes.

B. Compression Ratio of Image Raw Data

Several schemes can reduce the size of image raw data cache
lines. The normalized compression ratio (Original size

Compressed size)of
raw data is shown in Fig. 8. Biscsling can reduce the size by
truncating bits from both two directions. AxDedup/SimCom
can obtain a higher compression ratio by making use of the
data similarity. APPcache achieves the largest compression ratio
by largely remove similar elements and reduce the tag size of
full-similar cache lines. As a result, APPcache can improve
the compression ratio of raw data by 296.9%/48.3%/38.0%
compared with Biscaling/AxDedup/SimCom with 1% error
rate on average. Due to the high compression ratio, our
scheme can largely increase the potential cache capacity
thus improve the overall system performance [26]. Besides,
APPcache can improve the raw data compression ratio by
291.48%/61.38%/39.06% and 275.0%/72.16%/37.55% com-
pared with Biscaling/AxDedup/SimCom with 3% and 5% error
rate, respectively.

j p e g
k m e a n s s o b e l

2 d c o n v
h i s t e q

s m o o t h i n g c n n
g m e a n 1 %0 . 0

0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0 1 4 . 6 89 . 4 6

g m e a n 5 %

No
rm

aliz
ed

 co
mp

res
sio

n r
ati

o B i s c a l i n g A x D e d u p S i m C o m A P P c a c h e
1 0 . 7 4

g m e a n 3 %

Fig. 8: The compression ratio of the approximate image raw
data with several schemes.

C. Output Quality Analysis

In this section, we exhibit the output quality of several
benchmarks. Fig. 9 shows the relationship of output quality
with different error rates. As we can see, the quality loss
increases with a larger error rate, and the quality losses of all
benchmarks are within 5% with 1% error rate.
D. Applicability to Different Bitmap Formats and Data Types

In all tested benchmarks, various bitmap formats are used
to produce the output result. For jpeg, kmeans, sobel, they
use RGB bitmap format input file. histeq, 2dconv, etc. adopt
gray-scale (1 image channel) bitmap image. With the help of

0 % 1 % 2 % 3 % 4 % 5 %
8 5 %

9 0 %

9 5 %

1 0 0 %

Ou
tpu

t q
ua

lity

 j p e g k m e a n s s o b e l 2 d c o n v
 h i s t e q s m o o t h i n g c n n

Fig. 9: The output quality with different relative error rate.

annotations, all bitmap formats can be supported in our scheme.
As for the image data types, jpeg uses uint 16 to store image
data. While int data type is used for kmeans, histeq, etc. cnn,
smoothing use uint 8 to store input data. We assign several bits
to store these information in encoded data. In conclusion, our
scheme can work well with various bitmap formats and data
types in several approximate computing applications.

V. CONCLUSION

Approximate computing applications lead to large energy
consumption and performance demand for the cache memory
system. However, traditional SRAM based cache cannot satisfy
these demands due to high leakage power and limited density.
STT-MRAM is a promising candidate of cache due to low
leakage power and good scalability. However, STT-MRAM
suffers from high write energy. Thus, we propose APPcache, an
STT-MRAM based approximate cache architecture to improve
energy efficiency with little output quality loss. Experimental
results show that our scheme can reduce write energy by
21.9% and improve the raw data compression ratio by 38.0%
compared with the state-of-the-art scheme with the 1% error
rate.

ACKNOWLEDGMENT

This work was sponsored by the National Natural Sci-
ence Foundation of China under Grant 61832007, Grant
61821003, Grant 61772222, and Grant U1705261, in part by
the Fundamental Research Funds for the Central Universities
No.2019kfyXMBZ037, and National Science and Technol-
ogy Major Project No. 2017ZX01032-101, and Zhejiang Lab
(NO.2020AA3AB07).

REFERENCES

[1] J. San Miguel, M. Badr, and N. E. Jerger, “Load value approximation,”
in 2014 47th Annual IEEE/ACM International Symposium on Microar-
chitecture. IEEE, 2014, pp. 127–139.

[2] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, and J. Henkel,
“Approximation-aware multi-level cells stt-ram cache architecture,” in
2015 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES). IEEE, 2015, pp. 79–88.

[3] S. Yu and P.-Y. Chen, “Emerging memory technologies: Recent trends
and prospects,” IEEE Solid-State Circuits Magazine, vol. 8, no. 2, pp.
43–56, 2016.

[4] A. Ranjan, S. Venkataramani, Z. Pajouhi, R. Venkatesan, K. Roy, and
A. Raghunathan, “Staxcache: An approximate, energy efficient stt-mram
cache,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017. IEEE, 2017, pp. 356–361.

[5] J. R. Stevens, A. Ranjan, and A. Raghunathan, “Axba: an approximate bus
architecture framework,” in Proceedings of the International Conference
on Computer-Aided Design, 2018, pp. 1–8.

[6] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Approximate computing and the quest for computing efficiency,” in 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
2015, pp. 1–6.

[7] A. Ranjan, S. Venkataramani, X. Fong, K. Roy, and A. Raghunathan,
“Approximate storage for energy efficient spintronic memories,” in 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
2015, pp. 1–6.

[8] A. Jain, P. Hill, S.-C. Lin, M. Khan, M. E. Haque, M. A. Laurenzano,
S. Mahlke, L. Tang, and J. Mars, “Concise loads and stores: The case for
an asymmetric compute-memory architecture for approximation,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 2016, pp. 1–13.

[9] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, J. Henkel, and
J. Henkel, “Architectural-space exploration of approximate multipliers,”
in 2016 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2016, pp. 1–8.

[10] M. Brandalero, A. C. S. Beck, L. Carro, and M. Shafique, “Approximate
on-the-fly coarse-grained reconfigurable acceleration for general-purpose
applications,” in 2018 55th ACM/ESDA/IEEE Design Automation Con-
ference (DAC). IEEE, 2018, pp. 1–6.

[11] A. Ranjan, A. Raha, V. Raghunathan, and A. Raghunathan, “Approximate
memory compression for energy-efficiency,” in 2017 IEEE/ACM Inter-
national Symposium on Low Power Electronics and Design (ISLPED).
IEEE, 2017, pp. 1–6.

[12] Z. Chen, Y. Hua, P. Zuo, Y. Sun, and Y. Guo, “Reducing bit writes
in non-volatile main memory by similarity-aware compression,” in 2020
57th ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[13] Q. Guo, K. Strauss, L. Ceze, and H. S. Malvar, “High-density image stor-
age using approximate memory cells,” ACM SIGPLAN Notices, vol. 51,
no. 4, pp. 413–426, 2016.

[14] D. Jevdjic, K. Strauss, L. Ceze, and H. S. Malvar, “Approximate storage of
compressed and encrypted videos,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2017, pp. 361–373.

[15] J. S. Miguel, J. Albericio, A. Moshovos, and N. E. Jerger, “Doppelgänger:
a cache for approximate computing,” in Proceedings of the 48th Interna-
tional Symposium on Microarchitecture, 2015, pp. 50–61.

[16] J. San Miguel, J. Albericio, N. E. Jerger, and A. Jaleel, “The bunker
cache for spatio-value approximation,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 2016,
pp. 1–12.

[17] H. Zhao, L. Xue, P. Chi, and J. Zhao, “Approximate image storage with
multi-level cell stt-mram main memory,” in 2017 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD). IEEE, 2017,
pp. 268–275.

[18] J. Xu, D. Feng, Y. Hua, W. Tong, J. Liu, C. Li, G. Xu, and Y. Chen, “Adap-
tive granularity encoding for energy-efficient non-volatile main memory,”
in Proceedings of the 56th Annual Design Automation Conference 2019,
2019, pp. 1–6.

[19] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[20] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level
performance, energy, and area model for emerging nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 31, no. 7, pp. 994–1007, 2012.

[21] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran,
“Axbench: A multiplatform benchmark suite for approximate computing,”
IEEE Design & Test, vol. 34, no. 2, pp. 60–68, 2016.

[22] K. Barker, T. Benson, D. Campbell, D. Ediger, R. Gioiosa, A. Hoisie,
D. Kerbyson, J. Manzano, A. Marquez, L. Song et al., “Perfect (power
efficiency revolution for embedded computing technologies) benchmark
suite manual,” Pacific Northwest National Laboratory and Georgia Tech
Research Institute, 2013.

[23] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the fourth annual IEEE international
workshop on workload characterization. WWC-4 (Cat. No. 01EX538).
IEEE, 2001, pp. 3–14.

[24] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[25] S. Cho and H. Lee, “Flip-n-write: A simple deterministic technique to
improve pram write performance, energy and endurance,” in Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchi-
tecture, 2009, pp. 347–357.

[26] G. Pekhimenko, V. Seshadri, O. Mutlu, M. A. Kozuch, P. B. Gibbons,
and T. C. Mowry, “Base-delta-immediate compression: Practical data
compression for on-chip caches,” in 2012 21st International Conference
on Parallel Architectures and Compilation Techniques (PACT). IEEE,
2012, pp. 377–388.

